Original Equipment Manufacturer (OEM)

1. Project Overview

Application Purpose

The application is designed to streamline and manage warranty-related pro-
cesses for users and administrators. It provides a comprehensive platform for
handling various aspects of warranty management, including tracking, updating,
and processing warranty claims.

Key Features

Warranty Tracking: Monitor the status and details of warranties for
different products.

Claim Processing: Submit and manage warranty claims, including re-
viewing, approving, or rejecting claims.

Product Management: Add, update, and delete product information
related to warranties.

Batch Management: Manage batches of products, including tracking
serial numbers, batch renewals, and balance checks.

Vendor Management: Oversee service centers and suppliers involved
in the warranty process.

Settings Configuration: Customize warranty settings and preferences
based on organizational requirements.

Notifications: Receive updates and notifications related to warranty sta-
tus and claims.

Target Users

Customers: Individuals who need to file warranty claims or track war-
ranty information for their purchased products.

Administrators: Personnel responsible for managing warranty processes,
including reviewing claims, updating product details, and configuring set-
tings.

Service Centers: Vendors and service centers involved in processing and
servicing warranty claims.

Technology Stack

Frontend: React for building a dynamic and responsive user interface.
Backend: API integration with various endpoints for managing warranty
data.

State Management: Redux for handling application state related to
warranties and other features.

Styling: SASS, Styled Components, and Material Ul for a cohesive and
maintainable design.



Goals

o Efficiency: Simplify and automate warranty management processes to
reduce manual effort and errors.

e Accessibility: Provide an intuitive interface for users and administrators
to interact with warranty information and processes.

o Integration: Seamlessly integrate with existing systems and processes to
enhance overall functionality and user experience.

Th

2. Installation and Setup

¢ Prerequisites: Node.js, npm or yarn.
¢ Installation Steps:
1. Navigate to the project directory: cd warranty_application
2. Install dependencies: npm install or yarn install
¢ Environment Variables:
— Not required.
¢ Running the Application:
— For development: npm start or yarn start
— For production build: npm run build or yarn build

3. Project Structure
¢ Directory Structure:

public/

src/
assets/
Components/
Pages/
Sagas/
Slices/
Store/
App.jsx
index. js

package. json
4. Components and Pages

Overview

This section outlines the components and pages used in the application, along
with their associated routes and functionalities.



Routing Configuration
Public Routes

e Login:

— Path: /Login

— Component: Login

— Purpose: Allows users to log into the application.
e Forgot Password:

— Path: /Forgot-Password

— Component: ForgotPassword

— Purpose: Provides functionality for users to reset their passwords.
¢ Account Recovery:

— Path: /Account-Recovery

— Component: RecoverAccount

— Purpose: Facilitates account recovery for users.

Private Routes
¢ Dashboard:

— Path: /
— Component: Dashboard
— Purpose: Main dashboard displaying an overview of the application.

Products

— Product List:
* Path: /Product-List
* Component: ProductView
+ Purpose: Displays a list of products.
— Add/Edit Product:
Path: /Product/:type
+* Path: /Product/:type/:id
*+ Component: AddProduct
* Purpose: Adds or edits product details.

*

Warranty

— Warranty List:

+* Path: /Warranty-List

+ Component: WarrantyList

x Purpose: Shows a list of warranty packages.
— Warranty Claim List:

+* Path: /Warranty-Claim-List

*+ Component: WarrantyClaimList

* Purpose: Lists warranty claims.

Batch



— Batch List:

+ Path: /Batch-List

*+ Component: BatchList

* Purpose: Displays a list of product batches.
— Add/Edit Batch:

+ Path: /Batch/:type

+ Path: /Batch/:type/:id

*+ Component: AddBatch

x Purpose: Adds or edits batch details.

Vendors

— Service Center List:
* Path: /Service-Center-List
*+ Component: ServiceCenterList
* Purpose: Lists service centers.
— Sales Partners List:
+* Path: /Sales-Partners-List
* Component: SalesPartnersList
+* Purpose: Displays a list of sales partners.
— Supplier List:
+* Path: /Supplier-List
*+ Component: SupplierList
+* Purpose: Shows a list of suppliers.

Subscriptions

— Subscription:

+* Path: /Subscription

+* Path: /Subscription/:type/:mth/:nop

*+ Component: Subscription

+* Purpose: Manages subscription information and packages.
— Subscription List:

+ Path: /Subscription-List

*+ Component: SubscriptionList

+* Purpose: Lists all subscriptions.
— Subscription Package List:

+* Path: /Subscription-Package-List

*+ Component: PackagelList

+x Purpose: Shows available subscription packages.

OEM

— OEM List:

* Path: /OEM-List

*+ Component: OEMList

* Purpose: Lists OEMs (Original Equipment Manufacturers).
— Add/Edit OEM:

* Path: /0EM/:type



+ Path: /0EM/:type/:id
* Component: AddOEM
x Purpose: Adds or edits OEM details.

Supplier

— OEM Supplier List:
* Path: /0EM-Supplier-List
* Component: OEMSupplierList
+* Purpose: Lists suppliers associated with OEMs.

Settings

— Settings List:
+* Path: /Settings-List
Path: /Settings-List/:type
Component: SettingsList
Purpose: Manages application settings and configurations.

* X %

Components

¢ PublicRoute: Handles routes that do not require authentication.
o PrivateRoute: Manages routes that require user authentication to ac-
cess.

This document provides an overview of the routes and components used in the
application, specifying their purposes and how they are organized within the
routing configuration.

5. State Management (if using Redux or Context API)
State Management Approach

The application uses Redux for state management, with a combination of mul-
tiple slices to manage different parts of the application’s state.

Store Structure

The Redux store is structured using slices, each responsible for managing the
state related to a specific feature or domain. The combineReducers function is
used to combine all the individual slices into a single root reducer.

Reducers and Actions

Below is an overview of the reducers used in the application:

o authentication: Managed by AuthenticationSlice, handles user au-
thentication state.
e product: Managed by ProductSlice, handles product-related data.



e warranty: Managed by WarrantySlice, handles warranty-related infor-
mation.

e batch: Managed by BatchSlice, handles batch-related data.

e vendor: Managed by VendorSlice, handles vendor information.

o settings: Managed by SettingsSlice, handles application settings.

e header: Managed by HeaderSlice, handles the state for header-related
components.

e OEM: Managed by 0EMSlice, handles OEM-specific data.

o supplier: Managed by SupplierSlice, handles supplier-related informa-
tion.

o subscription: Managed by SubscriptionSlice, handles subscription
services.

Root Reducer

The root reducer is created by combining all the individual reducers:

6. API Integration

Overview

The application uses Axios for making HTTP requests to interact with various
backend APIs. Axios interceptors are used to handle authentication and set up
request headers. The APIs handle CRUD operations across different modules
like products, settings, warranty, batch, vendor, and more.

Request Interceptors

e Authorization: Before each request, an interceptor retrieves the token
from localStorage and adds it to the Authorization header as a Bearer
token.

e Content-Type: The request headers are set to multipart/form-data
to handle file uploads.

Response Handling

¢ Success Responses: Successful responses are those with status codes in
the range of 200 to 304. These responses are processed, and the result is
returned.

e Error Handling: If the request fails, the error response is caught and
returned with an appropriate error message and status code.

API Methods
The following methods are used to perform API operations:

e apiPost: Handles HTTP POST requests to create or update resources.
e apiPut: Handles HTTP PUT requests for updating existing resources.



o apiGet: Handles HTTP GET requests to fetch data from the server.
o apiDelete: Handles HTTP DELETE requests to remove resources from
the server.

7. Styling
Overview

The application uses a combination of SASS, Styled Components, and Material
UI to handle its styling needs. This approach allows for modular, reusable, and
themeable components that enhance the UI/UX of the dashboard.

SASS (Syntactically Awesome Style Sheets)

¢ Purpose: SASS is used for writing modular and maintainable CSS with
features like variables, nested rules, and mixins.

¢ File Structure: The SASS files are organized by feature or component,
with partials used for common styles like variables and mixins.

e Variables: Global variables are defined in _variables.scss to maintain
consistency across the application.

e Mixins: Reusable mixins are stored in _mixins.scss for common pat-
terns like flexbox, media queries, etc.

Styled Components

e Purpose: Styled Components are used to create encapsulated and the-
meable components with dynamic styling based on props.

e Usage: FEach React component has an associated styled component that
handles its styling. The styled components are often defined within the
same file as the component for better cohesion.

e Theming: A global theme is provided using ThemeProvider from
styled-components, allowing easy management of colors, fonts, and
spacing throughout the application.

Material Ul

¢ Purpose: Material UT (MUI) provides a set of pre-built components that
follow Google’s Material Design guidelines, which are used for consistent
and responsive Ul elements.

¢ Customization: MUI components are customized using the sx prop,
styled components, and the MUI theme for consistent design language
across the app.

e Theming: MUI’s ThemeProvider is used alongside Styled Components’
ThemeProvider to manage the application’s theme. The MUI theme is
extended to include custom styles and overrides as needed.



CSS Modules

¢ CSS Modules: When SASS is used in combination with CSS modules,
styles are scoped locally by default, preventing conflicts with other com-
ponents and improving maintainability.

This combination of SASS, Styled Components, and Material Ul ensures a flex-
ible, maintainable, and consistent styling approach across the application.

8. Testing
Overview

Testing in this project is performed by both developers and testers to ensure
the correctness of API endpoints and the overall functionality of the UI. The
testing approach includes manual testing using Postman for APIs and manual
testing of the UI without any additional libraries.

API Testing

e Tool Used: Postman

e Purpose: To test the functionality, reliability, and performance of API
endpoints.

¢ Process:

1. Endpoint Testing: FEach API endpoint is tested to ensure it re-
sponds correctly to various types of requests (GET, POST, PUT,
DELETE).

2. Request Validation: The request payload, headers, and parame-
ters are validated to ensure proper functionality.

3. Response Validation: The responses are checked for correct status
codes, data structure, and content.

4. Error Handling: Different scenarios, including error responses and
edge cases, are tested to ensure proper handling and messages.

5. Environment: Testing is performed in both development and stag-
ing environments to mimic real-world scenarios.

UI Testing

e Tool Used: Manual testing (no libraries)
e Purpose: To verify the visual and functional aspects of the user interface.
e Process:

1. Visual Inspection: The Ul is checked to ensure that all elements
are rendered correctly and align with the design specifications.

2. Functionality Testing: User interactions, such as button clicks,
form submissions, and navigation, are tested to ensure they work as
expected.

3. Responsiveness: The Ul is tested across different devices and
screen sizes to ensure responsiveness and proper layout adjustments.



4. Accessibility: Basic accessibility features are checked, such as key-
board navigation and screen reader support.

5. Cross-Browser Testing: The application is tested in multiple
browsers to ensure compatibility.

Summary

e API Testing: Conducted using Postman to ensure all API endpoints
function correctly and handle various scenarios.

e UI Testing: Performed manually to verify visual and functional aspects
without the use of automated testing libraries.

This approach ensures that both the backend and frontend of the application
are thoroughly tested for reliability and usability.

9. Deployment
Overview

Deployment of the application is managed using cPanel. The process involves
uploading the build files to the server and ensuring that the application is ac-
cessible and functioning correctly.

Deployment Process
1. Build Generation:

o The application is built using a build command (e.g., npm run build
or yarn build).

o This generates a production-ready set of static files in the build or
dist directory.

2. Accessing cPanel:
e Log in to cPanel using the provided credentials.
3. File Management:

e Navigate to File Manager: Go to the “File Manager” section in
cPanel.

e Upload Build Files: Upload the contents of the build or dist
directory to the desired directory on the server (e.g., public_html
for the main domain).

4. Configuration:

e Set Document Root: Ensure the document root is set to the di-
rectory where the build files are uploaded.

o« Update Environment Variables: If necessary, update environ-
ment variables or configuration settings to match the production en-
vironment.



5. Testing:

e Access Application: Visit the application’s URL to verify that it
is loading correctly.

¢ Check Functionality: Test key functionalities to ensure that ev-
erything is working as expected after deployment.

6. Troubleshooting;:

e Error Logs: Check server error logs in cPanel for any issues during
deployment.

o File Permissions: Ensure that file permissions are set correctly for
the uploaded files.

Summary

e Build Generation: Use build tools to prepare production files.
o cPanel: Utilize cPanel’s File Manager to upload and manage build files.
o Testing: Verify that the application works correctly post-deployment.

This approach ensures that the application is successfully deployed and accessi-
ble in the production environment.

14. Contact Information

e Company: Opine Infotech Pvt Ltd

¢ Email: support@opine.in

¢ Phone: +91 9894 112 506

¢« Company Website: Opine Infotech Pvt Ltd

10


https://www.opine.in/

	Original Equipment Manufacturer (OEM)
	1. Project Overview
	Application Purpose
	Key Features
	Target Users
	Technology Stack
	Goals

	2. Installation and Setup
	3. Project Structure
	4. Components and Pages
	Overview
	Routing Configuration
	Components

	5. State Management (if using Redux or Context API)
	State Management Approach
	Store Structure
	Reducers and Actions
	Root Reducer

	6. API Integration
	Overview
	Request Interceptors
	Response Handling
	API Methods

	7. Styling
	Overview
	SASS (Syntactically Awesome Style Sheets)
	Styled Components
	Material UI
	CSS Modules

	8. Testing
	Overview
	API Testing
	UI Testing
	Summary

	9. Deployment
	Overview
	Deployment Process
	Summary

	14. Contact Information


